HiBERTIENITIUNORE

B\ TN R

Complete Guide to

The

1974

June 1 ,

CVDOIOOa0 O
Cedmaood
DB OO D

J U W w0 Uy YU

l#._._#_-
PR, T L AT T M L
sloda i e e e e a0 IR ATT N e e R

*DYOSTIOIOTIW B UO STIRTTRAR OST® ST JUIUMOIOP STYJ,

0209 LI ‘uojsueA] ‘peoy ueplusyS £00¢ “AJLSUDALUAN UARTSOMYFUON “INTHIYIL ANY SHYILNdWOD
01 DULJLAM 40 £9€G-26F-2LE INITIVI A9 NOILVWYOANI FHOW NIVLE0 AVW NOA

The Complete Guide to HYPERTUTOR |
copyright, 1974, Northwestern University, Computers And Teaching

Entering Hypertutor

Wacky lesson
Terminating lessons

5
6
6
What happens "in" the lesson 7/
8
8
The ONLINE system 8

O

HYPERAUTHOR MODE. &t v vv v e v vonnenn.. 1
Daddy, where do lessons come from
Editor commands 11
More complicated editing 1.2
Deleting 14
Catastrophes 14
More information 14

ABOUT CL.A.Tu. i iiineeeeceenoenea. D
Games 15
Simulations 1%
Inquiry mode 13
Tutorial 16
Drill & Practice 16
Programmed Instruction 16
Further readings 16

HYPERCOMMANDS. & vt veecoeoens S b T

LEARNING ABOUT TUTOR. + ¢ o 0w v v. i a s a8
Command and tag 18
The AT command 19
Write 20)
Asking questions 20
Withholding the "ok" or "no" 22
Levels of response-checking 23
Branching 23
1TUTOR Branching (table) 25
Calculating 25
Storage formats 25
Variable numbers 26
Assignment of wvalues 26
Counting applications 27
Defining new variable names 28
Showing variable values 28

Numeric student responses 29
Storing character responses 29

Function keys 30

Erasing the screen 31

Inhibiting erasing 32
Conditionals 32
Speclal HYPERTUTOR variables 33
Indirect references 34
Graphics 34
Special characters 35
Writing sizes 36
WEIRDO TERMINALS. v v v .. S N & . aiwi
DOCUMENTING IT. @t i et omoneeennn T
Internal documentation 40
CONDUIT documentation guideline 41
DFLCTAL “LESSONS™. suwwew ¢ 6 5 68860 o o « 43
Restoring "idled" lesson text 43
SAVE and RESTORE 45
Other interesting lessons 47

FFFAR~-OUT IDEAS from

COMPUTERS AND TEACHING..... Y X <.
Computerized conferencing 49
A computer-based information
exchange 9l
Cottage industry 54
SPECTAL FEATURES. e v v v 0eeevenn. .. 1
Common storage 55
Random numbers 57
Jumpout 58
Vocabularies 58
Notes on programming technique 59
ST swmwiie § % S85E.63 o o T W . « 60
SYSTEM STRUCTURE. v v 0 v e eenene.. viw s 304
Structure o4
Plato compatibility o4

Common storage, hyperauthor,
access To otherprograms, les-

son directory, condensing 65
Checkup, daily hyperinfo,

"plato" wversion 66
The NUBB, Merlin's data,
hypercommunications, files 67

isting HYPERTUTOR commands, in
alphabetical order.)

0

Computer-Aided-Instruction (C.A.I.) has
acquired a rather bad reputation in its
short history =-- perhaps connected with

the generally poor attitude the
"public" seems to have of computers in

general. It has somelimes been billed

as a panacea for education, providing
individualized instruction and freeing

the teacher for more creative tasks. Tt

has also been extremely expensive, and
seldom has the expense been justified

by achievement of measurable education-

al objectives. C.A.I. is very "gim-

micky" —-- it is flashy, and schools are

apt to buy equipment just to show that
they are up-to-date, without realizing
how much effort is required to program

the computer and how much impact the

new teaching tool will have on the kids

and teachers.

The Computer Aids to Teaching project
1s attempting to formulate questions
about these areas, to develop guide-
lines for programming and transfer of
complieted programs, and to help esti-
mate the costs of C.A.I. in actual use
at the university level. One of the
outcomes of the C.A.T. project is the
HYPERTUTOR, described in this booklet.

The HYPERTUTOR is a C.A.I. system which
incorporates Theodor Nelson's HYPERTEXT
1dea (described later). A HYPERTEXT is
a "text" which is not conveniently re-
presentable in writing, primarily be-
cause of its complexity and the desire
that 1t be flexible (for use by student
users). The HYPERTEXT can be manipula-
ted by students and may be composed of
C.A.I. "lessons", graphic presentations
or other media, information retrieval
packages, computerized conferences,
statistical packages and other building
blocks. Ideally, it must be connected
to lots of learning resources outside
of the C.A.I. system itself. The
drawing on the page at the right illus-
trates the dilemma a user should face
when approaching the C.A.I. system =--
"Wow. What should I learn about next?"

An effective HYPERTEXT can only be
built on a computer with lots of
storage space for lessons and data.
Thus, we emphasize the large-scale
computer, with its great storage
capaclity and ability to process
hundreds of students at one time.
There certainly is no reason, how-
ever, that such a computer couldn't
be linked to smaller satellite com-

. puters and terminals at educational
centers, where specialized tasks

would be performed.

My view of the C.A.I. future is of
a large-scale computer, such as the
PLATO-IV system, with thousands of
users scattered across the country-
side, perhaps working in neighbor-
hood centers, where learning facili-
tators are available to help choose
subjects to be studied and select
resources to be utilized. Such a
system need not be any more expen-
sive than our current educational
system -- much of the work could be
done from the neighborhood centers
or from homes. This guide illus-
trates (1in a later section) that the
cost of C.A.I. need not be as high
as it was just a few years ago -- it
1s now within reach of most univer-
sities and many high schools.

T R L Secks e LU PRGN SOWH TR Farm e W ST W 6 Lim wead

HYPERTUTOR is a machine~language
pProgram which runs on CDC 6000 series
computers. It requires little cen-
tral memory (less than 20000 words),
depending upon memory necessary for a
particular lesson and upon options
selected by the installation, and
very little central processor time

0

(2.5 to 5.0 milliseconds of CPU time

per student-second on a CDC 6400). The computerized C.A.I. Learning Ex-
And it accepts the TUTOR-IV program- change =-- "What shall I learn about
ming language, which is compatible | next?" -- provides telephone access
with PLATO-IV. Programs from PLATO to a computerized bank of learning
can therefore be fairly easily resources. This 1s an ideal we hope
moved to HYPERTUTOR, and HYPERTUTOR to make a reality in the near future!

lessons are guaranteed to run on a

A current problem with PLATO is the Jim Schuyler, Dirpctor
high cost of terminals (over $5500

each). HYPERTUTOR will drive any
sequential line-by-line terminal a
computer system will drive. In our
Northwestern system, we also drive
Hazeltine-2000, ADDS 580 and 880
terminals, using the full range of
graphics available. The PLATO-IV
terminal may be driven from any
ASCII-sending computer, through a
device called the NUBB, which re-
quires only the special programming
of the "front—-end" computer, since
PLATO-IV terminals are full-duplex
with some additional complicating
characteristics. HYPERTUTOR sup-
ports full upper/lower case, line
drawing, character definition and
plotting, touch-panel, audio-unit,
slides and external channel eguip-
ment.

e skl cafdry FOOTE pman meam pmeem ommad et I RIS

Documentation on HYPERTUTOR is com-
plete in this booklet, copyvrighted
by Northwestern University, and
available in print or (at $1.00)
on- microfiche from:

Computers And Teaching

Northwestern University i
2003 Sheridan Road T

Evanston, Illinois 60201 R | A
m\ I

oQUD U i _

s WS D Bt atdetndeertuder 1,

UL S a2 M A ¥

points at part of the picture and gets
an explanation of its function.

HYPERTEXT is a word coined by Theodor H.
Nelson to describe his approach to Com-
puter Aided Learning. A HYPERTEXT ex-
ceeds the bounds of conventional C.A.I.
by putting the student in the driver's
seat, contrary to normal practice...

=

-u.__'utzl:-

In HYPERTEXT, the student is in contro
We could imagine a two-dimensional hyper-
text as a network of points with 1inks
between them (some links perhaps jumping
around or between nodes).

BEAR
’ o & e]

--.' tea{:her ."'.."-- o : . IR L - n, ::-‘ hard
-student = - = =~ == -~ <~-<subjects - -~ - : ' |
’ computer ’
B

¢ % v o P 4
VI T T
: g 3) A 1 { easy

physics D10 hemistry

ult
2
T /
7
"i.-* *

In such a hypertext the student might

According to Nelson, the trouble with
C.A.I. 1s that it's too much like what
we're trying to get away from -- it
doesn't let the student freely explore
the things which interest him. Instead
1t presents the "official" angle and its
officially presented tie-ins. Both the
regular classroom and CAI remove opportu-
nities for initiative; they both bore the
student, they give grades and narrow the

"fly" above the lattice, looking at
descriptions entered by authors of the
lessons at various nodes (or at comments
by students who had taken those lessons)
and might then decide to "take" a parti-
cular lesson. If the material turned
out to be too difficult, he would termi-
nate the lesson and start "flying" to a_
"lower" node, where material presented
would be less difficult. The columns ot

curricula in order to produce "results". the network might contain related types

of materials, varying in difficulty.
In an ideal instructional system (a HYPER

medium) "enthusiasm and involvement are
what really count". The student is given
an environment to explore, and is moti-
vated only enough to get him started.
Discrete (chunk style) HYPERTEXTS consist
of separate pieces of text connected by
Iinks. Ordinary prose may appear on the °
screen and be moved forward or backward by
throttle. An asterisk may indicate a con-
nection with some other point in the hyper-
text (a connection found and tagged by the
student usually). A HYPERGRAM or perform-

ing picture might explain how a motor works
or show how the sine and cosine vary as an

angle changes. A map might be projected,

Other variations are, of course, possible!

Note that not only could the student
change position in the network of lessons,
but the lessons themselves could instruct
the computer to switch lessons. This
makes it possible for a student to enter
a relatively simple lesson, learn more
and be switched to progressively more
difficult materials, and finally exit the
lesson on a completely different level.

and the student may move it around, blow it -"'*.‘.
up or make it smaller, at will. He might o ;i‘tj. o
request additional overlays, such as popu- _*_‘ﬁ,{:f;'f;:’f:;ﬁ;:’..
lation and climate. Or there might be RLNORIPRIRe, |
queriable illustrations -- the student

k. ."' "'i.l "'_'l-.. - -'

"‘-l.. * “h' -h" ,."-...‘" & & - -
'll-._'l‘_"b..‘. ".l_'l """ii""

PR L MO S AL ML

.‘_\ "'_"i.‘

W v

i'lll' _‘

L

L" .-'.)

Uf course, a HYPERTEXT doesn't have to be
two-dimensional -- it's just easier to

visualize it that way. As one finds more
ways of describing educational materials.
more dimensions may be added.

which the student may make personal con-
nections between nodes in the network.

AlT connections are remembered by the com-
puter and displayed upon request, so the

student can trace through previously re-
corded connections.

A "teacher" could create a small space
within the larger HYPERspace, in which a

group of students could work on a parti-
cular problem.

Dick Walz and I have thought about the
problems of simulation in such a system

as HYPERTEXT, and have created this model
to guide further experimentation:

A simulation model (of the world, let's
say) is created of a number of discrete
parts, each of which is entered as a node
1n a section of the HYPERTEXT. A world
model would be composed of population
projections, food supply, natural resour-
ces, disease, etc. The student is given

a choice of several pre-packaged models
In each field, shown below.

.

"1eu

w & ¥ ™ e
e
(D ct
LN -
. Lo i - . LB ey
- e
- o8
weil L - i I B
e # L-""l £5 $
i

Once the student has made a choice of model

for each sub-section of the world model, a
set of general input and output nodes is

0

proJection (next time-period) and then
jumps to the model in the next sector
selected by the student. When all of
the nodes have finished computing, the
grapnic output node is entered and a
graph is produced on the student's
screen. The student modifies assump-
tions, makes a different selection of

models, and tries again until the de-
sired effect is achieved.

Wnat is unique about such a model?
First of all, it provides the student
with the chance to make a choice among
many possible models. This is actually
what a decision-maker or planner must
do every day. Second, once the model
has been chosen, it is possible for the
student to revise that choice until a
reasonable outcome is achieved. And
finally, because the model is imple-
mented within the HYPERTEXT. each node
1s accessible to programmers and may

be easily changed or adjusted without
throwing the whole model out of whack.

The various sectors of the model have
access to each other's data, and to
results of previous computations. In
a conventional C.A.I. or other prog-
ramming system it would be terribly
difficult to establish such I inkages
among i1ndependent programs'

also chosen (to graph outputs, for instance).
Then, the master-control node sets up system

parameters and jumps to the first of the se-
lected models. Each model computes the next

Here's how to turn vour terminal on
to HYPERTUTOR!

1) Plug in the terminal and turn it on.

ITf the terminal has both LINE (ON-LINE)
and LOCAL modes, use LINE. Be sure the
acoustical coupler (below) is on too.

2) We recommend 30 character
per second operation -- call
7110 (312-492-7110 from out-
side) on the phone by the
terminal. If the number is .

busy or does not answer, call again in
a minute or two.

When the computer answers (with a tone)
you place the telephone handset into
the cradle of the acoustical coupler.
Don't tarry, the computer will hang up

1f you're too slow! The phone cord is
supposed to go in the notched end of a
coupler =-- be careful...

/e
-’
Hazeltine-2000 or

>
o aEGUStiEal
| coupler
ADDS 580 ¥
Texas /
Instruments K

®00 00000 /L4
125 0vden 5000

SO0 20000

*;GY‘

000 aD O
QOeD OO

OCOLe 09606

3) Press "return", "cr" or "new line" to

see 1f the computer 1s ‘communicating. Tt
will type an error message and say TERMI~
NAL IDLE if it's working. Tt is always
wise to try this step. If there is no

response, you may wish to try calling up
again later.

4) Type your charge number. It is com~
posed of two letters, four numbers, a

dash and four more numbers. You must get

numbeyr
~y

it exactly right! If vou blow it, you
must press "return" and start all over.

Most class charge numbers also reqgulire

H—-—ﬂ—-—_—n—!—-—h—--uﬂ—r-_ﬂ—pﬂ-_ll-——_.—-_q—_

that you place another dash, followed by

mm_“

number. Example...

XX0000-0000~JIMMY
You must press "return", "cr" or "new
line" after every line vou type. Be sure
you press it at the end of your name.

mEMH

5>) If your charge number is valid, the com-

puter will ask for CONTROL CARDS. Your
control card is...

$SCAT
It stands fmr_gpmputer_gidedllpstruﬂtimn,

and you must type it exactly as indicated.
Be sure you press "return", "cr" or "new

line" after typing in each line.

The computer will ask you your name and
the type of computer terminal you're
using. Type the model number (this will
normally be "2000", "580", "880","725"
or "33". A system message will be prin-

ted -- it often contains important infor-
mation about HYPERTUTOR -- please read it.

6) After the message LOADING HYPERTUTOR —.
1s displayed, you are under control of the
HYPERTUTOR system. It will tell you what
options you have -- currently they are:

1) to type a lesson name,

2) to type "browse", or

3) to type "help".

point, type HELP. You can always leave a

HYPERTUTOR lesson by typing the characters
#END

You are then returned to step 6, above.

/) To terminate the computer session, type
sLOGOUT

and hang up the telephone. Be sure you
turn the equipment off before you leave.

Computers And Teaching 312 492 5367
Computer operator 3695
C.A.T. terminal room 5517
Computing Center 3682

HANDY PHONE NUMBRERC

Most HYPERTUTOR users use student mode
almost exclusively. This is the mode of
operation in which one browses thru the
hypertext to select a lesson, and then
enters (or "takes") the lesson. It can
be contrasted with the author mode, in
which a user creates or modifies lessons
to be used by students. This section of
the GUIDE 1is intended as a roadmap to
help you understand how the student mode
functions, how to use it to select les-
sons, and how 1t relates to the author-
mode.,

AYPERAUTHOR

lesson directory

student

(condensed)
version

authotr—-mode
student-mode

The diagram above illustrates the rela-
tionship between what an author does and

what 1s available to the student. Les-
sons are generally written in a language

called TUTOR-1IV. These are stored and
modified as desired to produce a fully
completed lesson. The computer takes
the text and compresses (or condenses)
it into a special version which is put
into the lesson directory and can then
be used by students. It is always the
condensed version of a lesson which is
used to present information to students
on-line.

The lesson directory is updated each
time the author changes the TUTOR~-IV
text for that lesson. The lesson di-
rectory also contains a special list of
public lessons, which 1s updated daily.

ENTERING HYPERTUTOR

The TURNING QN section of this guide ex-
plains how to get a computer terminal
connected to the computer. Once the
user has typed %SCAI (step #5), s/he is
under control of HYPERTUTOR and can only

terminate the computer session by

typing %LOGOUT, or by hanging up the
telephone. The initial display men-
tioned in step #6 of that page looks
like this:

== HYPERTUTOR= =~

Type the name of the lesson you want, or
tvype "browse" to see some lesson names,

or type "help" to learn about HYPERTUTOR.

)

(type %LOGOUT before hanging up)

The display will be changed from time to
time (as we find clearer ways of saying
what we mean, and as new options are
added). It 1s important that you read
this page and not "mechanically" just
type "browse" or a lesson name, since 1t
will be adjusted without notice.

When special lessons are prepared by a
teacher for use by a single class or
group of students, they are normally
classified as private lessons. The

name of a private lesson 1s never shown
on the screen, and therefore it must be

requested while the student has this
initial displayvy on the screen. If the
student knows a lesson name, any les-
son may be requested by typing its
exact name at the arrow (»). Thus,
students who know the name of a public
lesson may access 1t without going thru
the browsing mode at all.

HYPERTUTOR always displays an arrow (Y)
to indicate that it i1is your turn to
type. Normally, one types a response

to a question and always presses the
NEXT (or carriage - return)key to sig-
nal that s/he is ready to go on. The
computer will always walt for the NEXT
key before proceeding. Special function
keys (like HELP) are discussed later for
those using the PLATO terminal.

If, at the initial display page, the
student types HELP (or presses the HELP
key on a PLATO terminal), a special
lesson is called. It introduces the

concept of a nypertext and explains the
browsing mode.

If the student selects browsing , a

second page (called the browsing page)
1s displaved:

--browsing-- -=-hypertutor—-
type "more" for information on a lesson,
or type "help" to find out how to browse

Jjotto
a challenging word game

An initial lesson name is always dis-
played in the center of the browsing
page (here it is "jotto") Normally it
will be the last lesson used by the
student. To randomly move from one
lesson to another the user presses the
NEXT key (we will always call the
"carriage-return" key the NEXT key, be-
cause that is what it is called on the
PLATO terminal and in the TUTOR langua-

ge). Whenever NEXT is pressed, the name
on the screen is replaced by a new name

and title. As on the initial entry page
the student may type the name of any
lesson to run it, even though the les-

son's name doesn't appear on the screen
at that time.

For the student to make judgements about

lessons, s/he needs more information. A
student may type the word "more" to ob-

tain more information about any lesson
whose name and title are displaved on
the screen. Usually there will be an
author's name and phone number, with a
short subject-matter description, ap-
proximate level of difficulty, comple-
tion status and sometimes some links to
other lessons. The four most common
links are called UP, DOWN, RIGHT and

LEFT., A sample of what appears on the
screen appears below:

-=browsing-- =--hypertutor--
type "more" for information on a lesson,
or type "help"” to find out how to browse

Jjotto
a challenging word game

Ymore
subject a word/spelling game in which

you guess the computer's secret
word.

author lew nathan

level high school or older
up password

left gametheory

right Jquesser

In this case, three special links have
been specified. UP links usually lead to
a harder lesson, DOWN links to an easier
lesson. RIGHT and LEFT lead to related

lessons 1n different subject areas. The |
author of a lesson is free to name his
links anything he wishes, and often vou
will find them named harder or easier.
If the student wishes to pursue one of
the links, s/he types the name of the
link (UP, for example) -- the display
will then be changed so the additional
lesson 1s shown. The student may re-

quest. "more" again, to search for further
links.

Even while browsing, the student may al-

ways request a lesson directly by typing
1ts name.

'm“
WHAT HAPPENS "IN" THE LESSON

After you type a lesson name, HYPERTUTOR
clears the screen and prints the current
time and date at its top. (This is also
true when a lesson voluntarily transfers
control to another lesson.) All of the
displays which then follow are created
by HYPERTUTOR as it interprets the in-
structions given by the author of the
lesson you've chosen. The text of the

lesson 1is physically located in the les-
son directory all of this time, and the
HYPERTUTOR simply examines this text to
determine what to display on the screen
and how to interpret your answers. Be-
cause HYPERTUTOR works in this fashion,
1t 1s called an interpreter. The dia-
gram below illustrates how it works:

BASIC -.
ogram

-t o

HYPERTUTOR 1s an active part of the sys-
tem, while the directory is not. The
HYPERTUTOR "grabs" information from the
lesson directory according to your
cholice of lesson (like reading a cook-
book) == but when it needs programs in
other programming languages (like BASIC
Or SNOBOL) 1t relinquishes control to
those programs. It regains control when

the other program returns control to it,
Oor when the user types %DROP.

WACKY LESSONS

Novice computer users sometimes can't
believe that something the computer
"says" can be wrong! If you get to a
point 1n a HYPERTUTOR lesson where vyou
can't make head or tails of what's on
the screen, or can't seem to get the
right answer to a question (or you know
you're right and the computer's wrong),
Just chalk it up to experience -- the
author of the lesson probably blew it in

some way. Perhaps the best strateqgy is
to note the error, being very explicit

about what was on the screen and what you

were answering to the guestion, and then

to forward your note to the author of the

lesson. You can do this through the
C.A.T. project, if you wish.

TERMINATING LESSONS

In many cases a student will legitimately

wish to terminate a lesson before the

author gives him a chance to do so. In

such cases, we recommend that the user
type #STOP (no period on the end!) to
terminate the lesson. Users on the PLATO

terminal may depress the SHIFT key and
press the special black key marked STOP.
The user is returned to the initial entry

display and may chooose to browse, or may
run another lesson directly.

Since the HYPERTUTOR can link to lessons
in other programming languages, we often
recommend that the user type %DROP if
the procedure indicated above does not
immediately terminate a lesson. %DROP
will always terminate programs (except
for the EDITOR) and return to HYPERTUTOR!

THE ONLINE SYSTEM

MostT HYPERTUTOR users will have little op-
portunity to learn about commands to be
given directly to the ONLINE system, which
controls the sending and receiving of char-
acters to all on-line terminals. ONLINE
handles the sign-on procedure explained in
the TURNING ON section, accepting your
charge-number and asking for the control-
card %$5CAI, which gets you into HYPERTUTOR.
The few commands you may need to know are
listed here, with brief explanations:

sHOLD

This command will cause the computer to
suspend the operation of your job for up to
two hours. You can later continue, perhaps

from another location or on another type of
computer terminal, using %$HOOKUP.

$HOOKUP-jobname

This command is used to connect your termi-
nal to a previously held job (or to one
lost due to computer failure or an acciden-
tal telephone disconnection). Always put
the jobname after the dash ~- exactly as it

was typed when you started it, or when you
held the job.

sM

It you type %M followed by a one-line mes-
sage, the computer will print it on the
operator's console. He can respond to

these when mounting tapes or when your job
1s in "trouble".

It is the ONLINE system which causes
the computer to process the student's
job. Because there may be many of
these jobs active (many students in-
teracting with the computer at the same
time) the computer must schedule the
operation of these jobs in such a way
that everyone is kept happy. Keeping

people happy is usually measured in
terms of low response~time. The res-

ponse-time 1s the time it takes the
computer to respond to you after you

type something and press NEXT. On the
CDC 6400 at Northwestern, vou'll find

that response time is usually about a

second (or less), but increases to per-
haps a few seconds in the middle of the

afternoon, when there are more users
demanding action. HYPERTUTOR's res-
ponse time will vary from computer to
computer, because of the scheduling
problems, which are complex,

The CDC 6400 computer is composed of

a central processor, ten peripheral
processors, a central memory, an ex-
tended core memory and a number of disk
storage devices. Also available for

slower retrieval of information are
many magnetic tapes.

The central processor 1s sometimes cal-

led the "head" by computer builders,
because it does the brainwork. The

central processor (CPU) calculates the
correct answers to gquestions, deter-
mines which unit is to be processed
next, calculates values, creates the
displays, and generally directs the
show when HYPERTUTOR is running. It
1s the fastest part of the computer.

Peripheral processors are slower than
the CPU, and perform less flashy tasks
like reading magnetic tapes, finding
and reading or writing information on
the disk storage devices, and carrying
on communications with the student's
terminal. They always take directions
from the CPU (as viewed from a pro-
grammer's standpoint). However, they
are the beasties who schedule the ope-~
ration of ONLINE, and are very impor-
tant to all of us. They are run by a

rather large library of system programs

written by people called systems program-
mers.

The central memory 1s where data and pro-
grams are kept for the central processor.
HYPERTUTOR 1s always 1n central memory when
it 1s calculating. When HYPERTUTOR is wait-
ing for you to respond to a guestion, how-
ever, the peripheral processors copy the
portion of central memory it would normally

occupy onto a disk unit, to release the
memory for use by other students. When you
finally type your answer and press NEXT,
HYPERTUTOR is read back into central memory
and begins calculating the appropriate ac-
tion again. This process of swapping your
Jjob in and out of central memory is part of
what is called time-sharing. The computer
shares its time among many users.

Extended core memory (or storage), ECS, can
be used to hold jobs swapped out of central
memory, or can be used for holding data. It
1s much larger than central memory, but is
harder to access and is slower.

Disks are very large storage devices, hold-
1ing about 100 million characters each, com-
pared to the 650,000 characters the central
memory could hold. Northwestern has about
370 million characters storage capacity on
disk at the present time. They are slower
than central memory, taking about 20 thou-

sandths of a second to access, compared to
about 1 millionth of a second for central
memory. HYPERTUTOR lessons are kept on disk

units unless "idled" due to inactivity.

extended core @
storage (ECS)

central peripheral @
processor processors
(CPU) (PPUS)
central
memory
(CM)

QOO0 O

student terminals

DADDY, WHERE DO LESSONS COME FROM?

After one has been introduced to the
HYPERTUTOR, it is reasonable to ask "How
are lessons created?®™ Paradoxically,
each and every lesson is created by an-
other lesson: HYPERAUTHOR. It lets an
author create TUTOR-IV files, of which
condensed copies are made and inserted
automatically into the lesson directory.
(See the student-mode explanation.)

HYPERAUTHOR is “entered" like any other
lesson -- by typing its name on either
the initial entry page or the browsing
mode page. It is a private lesson, and
will not appear while students are
browsing. It allows authors access to

an editing program, called EDITOR, in

order to create and manipulate files of
text with ease.

Each institution which uses HYPERTUTOR
utilizes its local EDITOR for creation
and modification of TUTOR-IV text files.
This is done so that users who already
know how to use the local editor need
not retrain to use HYPERAUTHOR. And
those encountering an editor for the
first time will gain a skill valuable

Lo them in other contexts on their com-

puter system. All of the information to

follow is applicable only to Northwes-

tern's EDITOR?
* ok o

The HYPERAUTHOR manipulates text stored

on disk units (see previous page), and
special directions must be followed for
text received on tape or cards.

When one enters HYPERAUTHOR, the EDITOR
immediately prints:

EDITOR READY
AUTHOR MODE
WHAT LESSON?
and waits for a response.

At this point the author must type the
name of a lesson to be created or modi-
fied (we will begin by assuming in the ex-
ample that the lesson is new). Once a
lesson has been named, it is difficult to

change that name, and lesson names should
therefore be picked with care.

4) characters -- no "special" characters,
such as commas, parentheses, dashes, etc.
are allowed. The author types the lesson
name and presses NEXT (or "carriage re-
turn®, "new line", "return", remember?) .
The HYPERAUTHOR next asks:

WHAT CHANGE CODE?
The change-code is a one to seven char-
acter word (which may contain numbers)
used to determine whether a person is

authorized to access the TUTOR text of &
lesson. Because this is a new lesson, you

may pick the change-code freely == if it
were a previously created lesson, you
would have to know the exact change-code
specified by its author in order to even
see the TUTOR text. Be sure you remember
your change-code -- the HYPERAUTHOR is
merciless and won't ever let you access
your lesson again if you forget it. You
can see that your change-code should also
be kept secret, so that others cannot acci-
dentally or maliciously change your lesson
without permission. Again, it is difficult

to change a change-code, so don't let it
get out!

If the lesson is just being created, the

interchange would look like this so far:
EDITOR READY
AUTHOR MODE

WHAT LESSON? test/

TS R

WHAT CHANGE CODE? FEB19

It 1s
SO type "yes". If you know that your
lesson previously existed, first check the

spelling of the name, to be sure you typed
1t correctly. Then check the change-code.
If one of them was wrong, say "no" and the
HYPERAUTHOR will let you try again. If
both were correctly spelled, there is a
chance that the TUTOR text of your lesson
has been idled automatically by the compu-
ter because you have not used it for seve-
ral days (the policy now is five days). In
such cases, you may use the GETFILE sec-
tion of this document to determine how to
retrieve your file. If you knew that your
lesson was not going to be used for a few
days and had the foresight to SAVE it on a
magnetic tape, you can use the RESTORE
lesson at this point to get it back. In
elther case, type %DROP, wait for the EDI~-
TOR to print its error message, and type
END to get back to HYPERTUTOR, then take
appropriate action.

If the author is accessing a previously
created lesson, s/he follows the same pro-
cedure with lesson name and change-code,

but the computer responds (for example) :

231 LINES READ
7

The EDITOR maintains a workspace of its
own while an author is working on a les-
son. It reads the permanent TUTOR text

of a lesson into that workspace at the
beginning of a NYPERAUTHOR run, lets the
author make corrections and additions, and
then writes the workspace back to disk
storage before a condensed student copy is
created for the lesson directory. When
the text 1s completely read into the work-
space, the count of its lines is printed

and 1it's up to the author to determine
what is to be done next.

EDITOR COMMANDS
Thinga to make life easier.

The entering of hundreds of lines of TUTOR
commands i1nto the lesson file can be an

arduous task, even for an experienced pro-
grammer. So the EDITOR has a number of

commands to make things easier. These are
not part of the lesson, but are purely in-
structions telling the EDITOR how to manip-
ulate the lesson text. In illustrations

which follow, all EDITOR commands will be
shaded (they are not a part of the TUTOR

text, and this should remind you). All
TUTOR commands will be un-shaded.

The EDITOR requires that you assign a
permanent line number to each line of
text entered into the computer. These
line numbers need not be sequential, but
wlll be sorted into ascending order by
the EDITOR to determine the order of com-
mands 1n the finished program. (The
PLATO-IV editor, in Urbana, does not need
permanent line numbers, and you will find
this to be an exception =-- most editors
wlll reguire numbers.) To enter the text
of a new lesson, one types line numbers,
each followed by a period and then the
actual text of that line. An example:

EDITOR commands and
interaction

llllllllllllllllllllll
--
lll
llllllllllllllllllllllllllllll

FUTHGR.MGHE*ﬁ&%ﬁi%ﬁﬁﬂﬁﬁﬁﬁﬁﬁ+ﬁxﬁ+HHE+&H

llllllllll
lllllllllllllllllllllll

AT TLESSONT? test Hriateilialaaeilialal el lal Ll

......................
.......................................

lllllllllllllllllllllll

iiiiiiiiiiiiiiiiiiii

SSON. DOES.NOT . EXIST. NEW LESSON? yes

? 10 Jname test

? 20Jtitle a test lesson

? 30Junit one

? 40 Jdat 503

? 50 write hello, this is a lesson.

stop

g

what the user types 1is 1italicised

CTUTDR" IV commands unshaded

The line numbers really tell EDITOR where
1n the workspace the next line of text is
to be inserted. [If there is any guestion
about this, try the example listed above
on the computer as soon as you can. Be
sure to observe correct spacing in the
TUTOR commands -- as an alternative to the
spaces between the command portion of a

line and its tag , you may wish to use a

semi-colon (;). ©Line 10, for example,
could be typed:

2l 0 dname; test

Mistakes can be corrected by retyping the

line at any time. [If you accidentally
type the same line number twice with dif-
ferent text, the second one will, of cour

be the one retained.] If yvou later find

that you need to insert more lines be-
tween two existing lines, pick a num-
ber which would lie between them and
Cype that line -- the EDITOR will in-
sert i1t in numeric order. This is why

the numbers in the example on the last

page are incremented by tens -- so

there will be room between them for
more additions and changes.

After a number of such changes and in-
sertions have been made, it is wise to

1i1st part or all of the workspace to
be sure things are going well. The
command LIST, abbreviated L, will list

any line or sequence of lines.
three forms:

¢ LIST
2 LIST,40
¢ LIST,40-80

The first of these will list the whole
TUTOR text of the lesson. The second

1s used to list an individual line (in
this case, line 40), and the third to

list a sequence of lines (40 thru 80

in this sample). These commands will
be of most use when authors are using

cathode-ray-tube (CRT) terminals, on

which only a few lines can be shown at
a time.

A full paper listing can be made of
any lesson at the time it is conden-

sed, by simply telling HYPERAUTHOR to
do so. These listings are printed at
high speed, either at the Vogelback
Computing Center, or at any of the
high-speed remote terminals.

You now know all you need to know to
enter a lesson, correct errors and add

new lines to it. To leave the EDITOR
and test the lesson, yvou need to know

about STOP. When the EDITOR is told
to STOP, 1t first copies the workspace
to "permanent" disk storage, replacing
the previous version. It is at this
point that a copy is condensed and ad-
ded to the student-mode lesson direc-
tory. The HYPERAUTHOR then asks you
whether you wish to try the lesson in
student-mode. If you do, you may be
able to detect errors or unintended

2

actions in the lesson. Once you've found
a number of these errors, or have completed
the lesson, you end student mode (#STOP or
SHIFT-STOP on PLATO terminals) and return
to HYPERAUTHOR to edit again. If you give
the same lesson name and change code, EDITOR

reads the lesson into its workspace and vou

cycle as many times as required to fix the
lesson.,

""""""

........
........

WHAT LESSGH?féEt':end of lesson
WHAT C C ?jsfebl9: @

{

;. xx LINES READ::

:

:

f
HSTOP .
i
SHIFT-STOP .
|

H]

DO YOU WANT Nes
TO EDIT AGAIN?

no | o
L—'——i—{{ﬂmne)*

|[For those worried about the cost of com-
puter time; 1t saves a lot of time if you
make as many additions and changes as possi-
ble before typing stop , then find as many
€rrors as possible in student-mode before
returning to edit. It is the reading and
writing of the lesson into the workspace,

and the condensation process which are most

expensive and therefore should be done as
seldom as possible.]

|

MORE COMPLICATED EDITING
e e e e e e ey e o 2 IN AT

An author often wishes to find some particu-
lar word or phrase in his TUTOR text and
does not remember where it was used in the
lesson. The SEARCH command finds it -

? SEARCH"cyanide"

2 SEARCH"cyanide" 1000-2000
The first will report back by listing all
lines in which the word "cyanide" appears in
the entire lesson. The second will list any
line between 1000 and 2000 which contains the
word. Any group of characters (or string)
can be found using SEARCH. Often, authors
will use slashes (/) rather than quotes (").

A second type of SEARCH is used in cer-

tain situations, and is less expensive.
It's called an anchored search, and is

specified:

ASEARCH"unit"”

It 1s called "anchored" because it will
find occurrances of the string you spe-
clfy only when they begin in column one
of a line. It is extremely useful for

searching for certain commands, such as
"unit", above.
units

1 5 MARVEL

105:UNIT TWIXT
507:4UNIT ZERO
607 JUNIT

Other commands which just happen
to contain the word "unit", like:
7177 WRITE THIS UNIT IS A...

wouldn't be reported by an ASEARCH,

Sometimes an author will find that a

relatively small portion of a line or a
group of lines 1s erroneous (the latter
case might be where the author realized
that he has misspelled a word throughout

a lesson). Instead of retyping the en-

tire line, or all occurrances of the

word in the lesson, the author may use
the REPLACE command.

REPLACE"x"y"
REPLACE"x"y" 40-80

Like SEARCH, REPLACE first finds the
string you've specified -- it then will
replace the specified string with a new
string of characters. Like SEARCH, the
REPLACE command can be limited to a sin-
gle line, or to a range of lines. 1In
the examples above, all "x"s would be
replaced by "y"s. Because REPLACE deals
with strings of characters, one must be
careful in specifying replacements -- a
common error 1s to forget that a set of

characters like "the" is often found in
other words. For instance:

REPLACE"the"these™
would cause the line below. ..

40 WRITE Here 1s some theory...
. . . CO become...
40 WRITE Here is some theseory...

In a lesson with several

As each line in a lesson's THTOR text
requires a line number, which must be
in ascending order, the author will
sometimes find it desirable to reset
all lines to a uniform sequence -- most
often this is desired after a lot of
insertions have been made. The RESEQ

command (which stands for RESEQUENCE)
will renumber all lines in a lesson,

incrementing them by tens. It is very
desirable to obtain a printed copy of

the lesson after resequencing. The
lesson:

test

a test lesson

one

503

hello, this is my

® test lesson...
. « s WOULA become. ..

test

a test lesson
one

503

hello, this is my
= OU, test lesson...

. « s UPON resequencing.

Often an author will find that s/he
needs a copy of certain lines of text
1n another place in the lesson text.
COPY will copy a single line, or a set

of lines, leaving the originals intact.
COPY 40,93

COPY 40-80,6000,5

The first form copies a single line to
the specified new location -- line 40
will be copied and placed at line 93.
If line 93 previously existed, the new
one will replace it, of course. The
second form copies lines 40 thru 80 to
begin at line 6000, incrementing the new
lines by 5. The increment is optional,
and will be assumed 10 if not specified.
One must be very careful with COPY be-
cause it will always replace existing

lines at the new location wi}h the copied
lines.

At times an author will desire to com-

pletely MOVE a section of texXt To a new
location in the lesson. This 1s done
using MOVE, whose format is exactly the
same as COPY -- it essentially performs
a COPY and then deletes the original

lines from the lesson.

MOVE 40,93
would bodily move line 40 to new position

3.

When long sections of text are to be en-

tered continuously, the typing of line
numbers may be a great convenience. They

may be omitted under the following com-
mand, TEXT. While the EDITOR 1is in TkX1

mode, everything typed goes directly
into the TUTOR text of the lesson. NO
LISTing, COPYing, etc. may be done while
EDITOR is in TEXT mode! One escapes the

TEXT mode by typing %E

...................
lllllllllllllllllllllllllll
.........................
lllllllllllllll

L |
..........................

lllllllllllllllllllllllll
llllllllllllllllllllllll

lllllllllllllllll

iiiiiiiiii
llllllllllllllllllllllllll

lllllllllllllllllllllllllll

lllllllllllllllll

lllllllllllllllllll
llllllllllllllllll
llllllllll

lllllllllllllll
""""""""

lllllllllllllllllll
llllllllllllllll

? text
? name; test
itlera second test lesson fiai

of P

g ? lunit;one

q;? at:503

Sl ? write;this is my second

—| 2 |: lesson, entered in TEXT.

& 7528 A

B DA

E 10 INAME TEST

E§2D ITLE A SECOND TEST LESSON
30 T ONE
40 |AT 503
50 WRITE THIS IS MY SECOND
60 LESSON, ENTERED IN TEXT!
> stop-

It is very important that you remember to
type %$E to terminate text mode.

TEXT can be used in two ways: 1) to add
series of lines at the physical end of a
lesson, or 2) to add lines in the middle

of a lesson. When one types TEXT by 1it-
self, lines are added at the end -- when

vou type TEXT, followed by a line number,

0

insertion begins at the line you specity.
TEXT increments its line numbers by ten
unless vou include a second number after
the starting line number:

TEXT 6000,5
for instance, would begin adding lines at

6000, and would increment numbers by B

A T e R T TP S TR R Y

DELETING

I+ is sometimes necessary to go back to
delete whole sections of text from a
lesson. The DELETE command has the

same format as LIST:

DELETE 98 |

DELETE 100-199
The first form deletes a single line -=-
the second deletes a range of lines.

CATASTROPHES

Because the EDITOR reads a copy of the
lesson text into its workspace at the
beginning of a HYPERAUTHOR session, 5 5
is possible to recover from catastro-
phes (like accidentally deleting most
of a lesson) by directing the EDITOR
not to move the workspace back to per-
manent storage at the end of the ses-
sion. Do this by typing:

END
as soon as the error is discovered.
Control is immediately returned to the

HYPERTUTOR.

-

TNFORMATION

The EDITOR is maintained by the Vogelback
Computing Center, which publishes a guide
for users. It has a HELP command which
1ists the commands available TO users,
and an author may request a shorthand ex-

planation of any command Dby typing the
word EXPLAIN, followed by the name of the

command :

EXPLAIN DELETE
These explanations are short, and do not

include information for novice Uusers, and
we recommend that new users first Try One

of the examples we've given.

Computer—-Aided-Instruction (CAI) takes
many forms: games, simulations, ingquiry
mode, tuteorials, programmed instruction
or drill and practice. These may be
combined with other computer science
techniques, information retrieval, sta-
tistical manipulations, graphics and
other special-purpose programming sys-
tems. This chapter will outline some
forms these techniques might take, and
will give some examples. It is fol~-
lowed by a short annotated bibligraphy.

The TUTOR-IV language is much easier to

use (and more powerful) than other CAT
languages. Although it would be easy

to program information retrieval or
statistical operations in TUTOR, the
computer 1s shared among many students
1n CAI systems, and there is also not
enough flexible storage space on most
CAlL systems to allow such computer-in-
tensive uses. Each student is provided
with a small storage space, and many
programs may simultaneously access com-
mon storage space for communications

purposes —— thilis 1s plenty for most of
the CAI applications discussed here.

The HYPERTUTOR (as opposed to PLATO)
provides direct links to programs in
other languages for those who need them
at appropriate moments.

. GAMES

Computerized games can be used to teach
Kids, but most of them are sheer diver-
sion. In spacewar, for instance, two
opponents see simulated spaceships on
thelr screens. By pressing appropriate

keys, they maneuver their ships and try
to "hit" each other with space rays. A

number of variations exist; the most
popular one on PLATO is dogfight, in
which the spaceships have been traded
for world-war I airplanes. Games are
used to great advantage with young kids
in the elementary math program on the
PLATO system. In one game, kids get to

choose how many bees to put into a bee-
hive on the screen. They then press "i"

to put bees into the hive and "o" to

take them out -- they have to learn to
subtract in order to tell how many bees
are (invisible) inside the hive by
counting how many are outside. And

the kids learn to count, assign place-
values, etc. from more games.

SIMOLATIONS

Simulations can serve as learning tools
by acting as complex games in which the
learner must guess the rules of the game
Oor determine how to use those rules to
achleve a certain outcome. The popula-
tion simulations of the Population Dyna-
mics Group at the University of Illinois
are used in this way. The students must
manipulate variables which affect the
population of a country and observe the
outcomes as part of the learning situa-
tion. Simulations have also been used
in teaching electrical engineers about
the properties of electronic circuits =--
they change the values of various system
components and observe the outcome in

terms of the actual performance of the
glroait.

INQUIRY MODE

This is the "best" of the CAI modes be-
cause the student gets to ask the gues-

tions. The lesson usually sets a context
and the student takes it from there. A

few good 'inquiry mode lessons exist on
PLATO —- ‘one of those is an organic chem-
1stry lab in which the student asks ques-
tions about an unknown substance and the
computer gives the answers. The student
must work toward an identification of the
unknown, and the computer doesn't even
prompt unless asked. Inquiry mode varies
quite a bit, but in general it means that
the student asks the questions =-- some-
times the student is prompted by a teacher
and sometimes there's a workbook giving
useful hints -- what's important is the
student control. (Note that a general
context for the inquiry is always set by

the program -- the student can't just ask
any question!)

out by programmed textbooks, on paper.
The computer can be programmed to carry
out such a strategy, but is much more ex-

pensive than paper, and should be used in

to answer questions and give guidance more complicated strategies. The TUTOR

on all matters. The word tutorial has
come to mean (in CAI terms) an inter-

action in which the computer selects
the next step for the student, cor-

A perfect
tutorial would contain enough material

Lo satisfy the slowest or the fastest
student, and would be able to pick the
appropriate time to present it. T+t 1S
extremely difficult to write good tu-
torial lessons. Though most CAI ex-
perts define the word rather strictly,
1 like to believe that a true tutor-
ial includes material written in both

inquiry and programmed 1nstruction
modes, where appropriate.

'_l——_-__-._

DRILL & PRACTICE

Patrick Suppes, of Stanford University,
has been the most visible proponent of
the drill & practice mode. 1In this

mode, the student is drilled on a spe-

cific skill, until s/he masters it. A

before a drill g practice lesson can
be written for it. D & P lessons may
be pieced together in sophisticated

ways —— students might be branched to
"faster" or "slower" lessons, tested,

Or tutored as part of the program. No
one claims that any one CAI strategy
1s the total answer to Ceaching via a

Strictly used, it applies to
a mode of interaction in which a prob-

lem is presented to the student which
requires a one-word answer. The stu-
dent answers, and then is allowed to
see the correct answer -- immediate
knowledge of the correctness of his
answer 1s an integral part of P.T.
Most programmed instruction is carried

language is well suited for all of the
strategies outlined above.

FURTHER READINGS

LICCIT system:

"An Overview of the TICCIT Program",

Mitre Corp., 1820 Dolly Madison Blvd.
McLean, VA 22101, January, 1974

F

Bunderson, C,. Victor, "The TICCIT

Project: Design Strategy for Educa-
tional Innovation"™, Tech. Report 4,

1l.C.U.E., W=164 STAD, Brigham Young

University, Provo, Utah 84602, Sep,
1973

PLATO-IV svystem:

Bitzer, Donald I., et al, "Computer-
based Science Education" CERI, Report

X=-3/, May, 1973 |Computer-based Edu-

cation Research Lab, Univ. of T11i-
nois, Urbana IL 61801]

PLANTIT
Frye, Charles, "CAI Languages: Capa-

bilities and Applications", Datama-
tion, 14(9), Sept., 1968, pp. 34-37

General:

Hicks, Bruce & Hunka, S,, The Teach-

er .and the Computer, W, B. Saunders,
Philadelphia, 1972

Atkinson, Richard C. & Wilson, H.A.,
Computer-Assisted Instruction: A Book

Oof Readings, Academic Press, New York,
1969

Holtzman, Wayne H., Computer—-Assisted
Instruction, Testing, and Guidance,

Harper & Row, New York, 1970

2
=
Z>
Z

2
ﬁt

beginning of
a HYPERTUTOR lesson —- they are used by
HYPERTUTOR to position your lesson, and by
students to determine what a lesson 1s
about. These commands include: NAME,
TITLE, AUTHOR, SUBJECT, STATUS, LEVEL,
PUBLIC, PRIVATE and PASSWORD, plus the

"links" for the lesson. These commands

lllllllllllllll

lllllllllllll
llllllllllllllllllllllll

lllllllllllllllllllllllllllllll

llllllllll

......................

lllllllll
llllllllllllllllllllllllllll

2 10 Jdname test
2 20Jtitle a test lesson

? 30Jauthor 7im schuyler (492-5367)
2 40 jsubject a short introduction to

? 58 fractions.
2 60Jstatus incomplete
2 70.J}1level high school
? 80 Jpassword zorch

2 90Jjunit one

? witlete

most always the same as the one given to
the HYPERAUTHOR (although it may differ if
you wish). If desired, it may extend to

ten characters, in contrast to the seven
characters HYPERAUTHOR will accept. The
TITLE must be a single line, and is dls-
Played in browsing mode. It is best to

limit the title to 50 characters or less.
The SUBJECT command gives a broader deg-

cription of the lesson, and may occupy up
to eight lines.

configuration is the links among the
lessons, special HYPERCOMMANDS have
been created to describe these rela-
tions. Most authors will use UP, DOWN,

RIGHT and LEFT, with the following
meanings:

UP = more difficult

DOWN = eagsier

RIGHT = a related subject area
LEFT = a related subject area

Each of these linking HYPERCOMMANDS
will specify a single lesson name
with the indicated characteristics.

For instance, we might add links to

numtheory
division
reduction

In the browsing mode, when the stu-

dent types UP, s/he will be branched
to the lesson named "numtheory",

where browsing will continue.

It i1s our plan (for the near future)
Co allow links to be created by stu-
dents, or given non-standard names by
authors. For instance, an author
would be able to create HARDER or
BASTER links instead of UP and DOWN.

If PRIVATE and PUBLIC are not used in

a lesson, the lesson will be declared

PRIVATE by HYPERTUTOR (automatically).
AT any future time, the author may in-
sert a PUBLIC command to put the leg-

SONn name on the browsing list. Again,
at some future time, there will be a

mandatory review procedure for lessons
which are to be PUBLIC -- during some

period of time they will be placed on
a "probationary" PUBLIC list, and may

When they have received enough posi=-

tive "votes", they will be added to a
more permanent PUBLIC listing.

The primary reason authors have little
trouble mastering the TUTOR-IV pro-
gramming language is that the commands
one gives to the computer are quite
similar to the lexicon one would use in

English to accomplish the same purpose.
Another reason may be that, in contrast
to other programming languages, the
progression of TUTOR statements is
quite logical; the sequence of the
commands follows rather closely the

conceptual order of events which the
author has imagined for his lesson.

TUTOR commands to be processed together
are grouped into units. These units
all start with a UNIT command. All of
the commands after a particular UNIT
command, up to the next UNIT, are a

part of that logical entity. Example:
unit initial
at 503
write welcome to a lesson on the

names of the Watergate

conspirators.

at 903

write IF'or our "records", type
your name below:

AXrow 1103

storea nl, jcount

ok

next begin

I'Eﬁit begin

RS - 0. S

In this sample there is a single unit
(named "initial") and the first com-
mand in a second unit ("begin"). A
reasonably satisfactory definition of

a UNIT 1s "a set of commands intended
to be processed together."”

COMMAND AND TAG

Each line of a TUTOR program is com-

posed of two parts, command and tag. The

command always begins in column 1, im-

medlately after the period which follows

the editor line number.

name; test

The tag always begins in column 11, or

immediately after the semicolon (if you

use it to separate command and tag). The
semicolon is interpreted by the EDITOR + -
and 1s not officially a part of the TUTOR
command. When the EDITOR later lists the
line, you will find that it has been re-

placed by the appropriate number of spaces
to make the tag appear in column 11. The

tag position may vary from TUTOR system to
TUTOR system.

Like most TUTOR commands, the UNIT command
always has a tag. The UNITs in the exam-
ple at left are "initial" and "begin" and
are named in the tags of their respective
UNIT commands. The tag on UNIT may con-
sist of any combination of numbers and
letters the author selects, as long as it
does not exceed eight (8) characters in
length, and as long as there is not already
a2 UNIT by the name used. The reason for
the last condition is understandable: if

the computer is told to process next in a
unit called "begin", there had better be
only one unit by that name!

The NEXT command is used to specify the

order 1n which units are to be processed.
The NEXT command in the example specifies
that "begin" is to be processed next. It
can be used 1n many ways, to adjust the

student's progress, or to branch depending
upon the last error made.

UNIT and NEXT are the most basic seguenc-
ing commands. UNIT is really just a

marker which gives a name to a set of com-
mands; NEXT is actually processed when the
student 1s running a lesson, and gives the

computer instructions about which unit is
to be processed next.

Two other i1mportant commands from the ex-

ample are AT and WRITE, both controlling
actions on the student's screen. They are

almost always found together. AT specifies
where 1nformation is to be written on the

screen, and WRITE tells the computer what
to write.

19

AT has as 1ts tag a "screen address" in
one of two possible formats. The first
of these 1s called "gross" coordinates,
and the latter, "fine" coordinates. In
the gross—-grid, a position is specified
by LINE and CHARACTER.

...04... 80
24 |

CHAR
INE 1\\3456?. ;
Qs
edge ﬂf
O
. 4 ‘(_,b-::rttmm mf P;ID.ﬂS_.gBéqqiﬂgfé;ﬁ-r"“

THE "AT" COMMAND

L B

edge mﬁ
!HHI|'Hm=i:s; b
s"ﬂr se mDDFSB

27 j__gﬂttmm of _Hazeltine-2000 |

s § 0 TT TooTmmm e 7'—"

j2 of P *Tl-IV screen

= = RN TR T I

One cmmblnes LINE and CHARACTER into a
single number, the "hundreds" portion
of which i1ndicates the LINE, and the
"units"” and "tens" indicating the char-
acter position on that line. The num-
ber "903", for example, indicates line
O, character position 3. "1245", in a
similar fashion, indicates line 12, and
character position 45.

If an author is writing a lesson which

1s to run on any type of terminal, screen
positions must be restricted to the low-
est common screen size, 24 lines by 64
characters. Lessons which require the
drawing of lines, or use of special char-
acters, must run on PLATO-IV terminals,
and may use the entire screen of that
terminal.

the "Y" (or wvertical) position. Each of
these numbers may range from 1 to 512.

A change of a single unit in either the

X or Y direction produces a change of ONE
DOT in the appropriate direction on the
student's screen.

512

51

A sample unit is shown below:

unit first

at 1205

write This lesson will introduce
the metric system.

at 1505

ite Do you know anything about

this system already?

AYYOW L7705

[answe:r: ves

next review

answer Nno

[next second

The first AT specifies a screen position
1n gross—grid coordinates, at line 12,

character 5. The WRITE command which then
follows will begin writing text at that
position. The second AT selects a lower
position on line 15, where the second

WRITE will place its text. 1In addition,
the ARROW command (to be singled out in
later sections) also specifies a screen

On the PLATO-IV terminal, the "fine" co-
ordinate system may be used to attain

more control over the placement of text
and lines on the screen. When one uses
fine-grid coordinates, the first number
specifies the "X" (horizontal) position
on the screen, and the second specifies

position on line 17, for the "arrow" which
indicates that the computer is waiting for
the student's response. The figure on the

next page shows what the student would see
when running the unit above. Note that

each of the WRITE commands was written as
a paragraph, and that the HYPERTUTOR has

neatly paragraphed them on the screen,
with a straight left margin.

06/01/74 15.55.00.

This lesson will introduce
the metric system.

Do you know anything about
this system already?

?

WRITE

Though the author of this example has
used separate WRITE commands, one can
alwayvs put several sentences, or even
paragraphs into a single WRITE:

unit first

at 1205

write This lesson will introduce
the metric system.
Do you know anything about
this system already?

aAYXYOw 1705

Iﬁnswer yes

s v BUE uia

The purpose of the WRITE command 1s to
provide text to be written on the screen,
and text is always displayed exactly as
written by the author (except in cases
where it would run off the edges of the
screen, when unpredictable thing happen).
On the PLATO-IV terminal, upper and lower
case characters may be used: on other
devices, the standard i1s usually upper
case. Authors writing on CRT terminals
may write lessons which will produce
capital letters when run on PLATO termi-
nals by inserting an up-arrow (T) before
any character which is to appear capital-

ized on PLATO terminals. The up—-arrow
is automatically removed when the lesson

1is run on normal CRT terminals.

Authors will note that printed versions
of lessons which contain capital letters

contain these up—arrows, because our

printers do not have capital and lower

case letters.

Combinations of AT and WRITE may be

used to place text anywhere on the
screen, in any order -- however, 1if
an author wishes to produce lessons

which will make any sense at all on

Teletype (or other printing) terminals,
it is best to at least WRITE in a logi-
cal order, so that the information would
be readible if written down the left-hand
margin of the page. [Because of the
plethora of terminal types, we seldom
suggest that a lesson be written in

such a fashion -- more often it 1is
possible to write sections of a lesson

to run on the different devices, and

then ask students to switch to CRT or
printing terminal at appropriate times.]

ASKING QUESTIONS

Just presenting information to the stu-
dent on a computer terminal isn't enough
to make a decent "lesson" -- one must be
sure the student understands the subject,
and this is done by asking questions. 1In
the Ingquiry mode, for instance, the stu-
dent is the one asking the questions, but
in all modes it is important that there
be a two-way interaction. TUTOR and
HYPERTUTOR signal the student that an
answer (or other student action) 1s re-
quired by printing an arrow (?) on the
terminal and waiting for student action.

The author of a lesson determines when

a student response or action is required
and places an ARROW command in the les-
son at the appropriate spot. As indicated
in the last section (on the AT command),
an ARROW also has a screen position specil-
fied with it. When the student types an
answer, the characters always appear toO
the right of that arrow on the screen.
Every response to an ARROW must be pro-
cessed and "judged" right or wrong (but

the judgement may be withheld from the
student, if the author so specifies).

When the student gives a CORRECT answer,
the characters "ok" are written to the
right of it. Incorrect answers (or an
answer the author didn't anticipate) are
marked "no". If desired, the author of

a lesson may change these judgement
words to two of her choice.

The ARROW command is intimately invol-
ved with a set of commands to be called
answer—-checking or judging commands,
used to check the "answer" a student
gives to a question. These include
ANSWER (specifving a correct answer or
set of synonymous answers, to be marked
ok™), WRONG (specifying an incorrect
answer, judged "no" if it appears), OK
(specifying that unanticipated answers
are to be treated as correct answers)

and NO (specifyving that unanticipated
answers are incorrect), and CONCEPT.

As a guide to understanding the inter-
action among various types of TUTOR
commands during the judging of answers,
we will now divide the "unit" concept,
so that a unit consists of several sec-
tions: Unit-contingent, arrow-contin-
gent and answer-contingent commands.

one
pPresenting 1250
info or Hello, welcom.. .
question
to be pro- 2205
cessed in nl
connection = —
with arrow) |
answer- an wer Ves
checking That's the...
groups and next two
contingent answer possible
actions write That's not...
next two
rmng lucid

'ertE You blew it

®
E&rite Hint =-- ...

(Some units contain no ARROWs, but most
will follow this organizational scheme.)

In the "presenting" section, there will
be AT and WRITE commands, often with
other appropriate "regular" commands
which either perform calculations or
show the calculated wvalues of TUTOR
variables. These put information on
the screen, or present the question to
be considered by the student. The ARROW
will at times be followed by commands
which store the student response (STORE
appears in the example) or remove char-
acters from it (BUMP, in the example).
Then, a large number of answer-checking
or judging commands may follow, in any
order. When the student types an ans-
wer and presses the NEXT (or carriage-
return) key, HYPERTUTOR will attempt to
make a close match with the tags of the
answer—checking commands. If a good
match 1s found, HYPERTUTOR will process
the "regular" commands (AT, WRITE, NEXT,
JUMP, etc.) which follow the answer-
checking command. These statements are
said to be answer-contingent, because
they are performed only when their cor-
responding answer matches the student's
answer. Thilis makes it possible to give
hints or display remarks, and to branch
€O a new unit, depending upon the answer
the student gives. If none of the ANSWER
or WRONG commands vield a close match,
any OK or NO command will be processed,
and answer-contingent commands which fol-

low may again be used to give hints or
to branch to another unit.

—t B

If the judgement "no" is given, the stu-
dent is forced to repeat the ARROW (and
therefore, to answer again) until a cor-
rect answer 1s finally given. (It is
always possible to count the number of
incorrect answers a student gives and
branch to remedial units at the appro-
priate time, but this isn't done in an
"automatic" way.) When an "ok" answer

15 given, the student is free to go to
the next unit -- if a NEXT command fol-
lows the answer-check which matched, s/he
will go to the unit named in that command.
It there is no NEXT command, the student
will proceed to the next unit (in physi-
cal order) in the lesson. NEXT is only
effective when the answer is judged "ok"
and 1s fully treated in another section.

ol

At this point in your TUTOR education,
it would be appropriate to go to the
computer and attempt yvour own program.
That program might consist of a single
unit (or short series of units) asking
simple questions, like the sample

What is the capital of

below: I1linois? ? Springfield ok
name cest
title joe's test lesson press NEXT
unit shampoo
at 503 | Now the student has answered correctly,
write What 1s the capital of and upon pressing NEXT, will be branched
Tllinois? to the appropriate unit, "mass", as
AYYOW 617 specified in the NEXT command which is
linswer Springfield contengent upon the answer "Springfield".
ext mass |
rong Chicago On the HYPERTUTOR system, the message
= 703 "PRESS NEXT" (or the appropriate key

rite

That's the largest city,
but i1t isn't the capital.

-name for the terminal being used) will

appear at the bottom of the screen, to

wrong (Rockford,Peoria) prompt the student.

Lvrite sounds like a guess to me.

no Because the student cannot proceed until
t 703 an "ok" answer has been made, you (the
ite Hint -- Spring fol<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>